
Atari Pong AI via Reinforcement Learning
Ghost in the Machine Paper #1

Ozaner Hansha

February 20, 2019

Abstract

This paper has two main goals: 1) To explain, in broad terms, the

construction of an artificial intelligence trained to play Atari Pong via

reinforcement learning and 2) to use that AI as a vehicle in exploring

how modern advances in artificial neural networks and deep learning may

change our perception of what constitutes ‘thinking’ in a computer.

1 The Problem

1.1 Hard-coded vs. Learned

Our goal is to create a learning agent, a program, that can defeat an

opposing hard-coded agent at Atari Pong. Here ‘hard-coded’ refers to

a program that does not make use of machine learning algorithms and

techniques. This means that the AI is the product of a human programmer

analyzing and engineering an algorithm specialized to playing Atari Pong.

This is opposed to our AI, which will be using a general purpose learning

algorithm and gradually get better at playing pong as it plays more games.

At least that’s the hope.

This key difference between the two AIs is the object of this paper.

1



Indeed, a pong playing AI is not very impressive in this day and age,

but a AI that learned to play pong? Programs such as these, which

have only come into existence relatively recently, have far more interesting

implications which we will touch upon later in the paper.

1.2 The Game

The game environment is simulated via OpenAI’s gym python package,

and is one of many Atari games included in it. This fact isn’t too impor-

tant to our purposes, however, as Pong is a relatively simple game with

little variation between versions.

Each training match between these two AIs is called an episode, and

each episode goes on until one player reaches 20 points. As we’ll see below,

whenever the AI loses a round it is given negative feedback associated

with its actions (i.e. ‘punished’) and positive feedback when it wins (i.e.

‘rewarded’). It is from this simple incentive mechanism that reinforcement

learning, a type of machine learning which we are about to explicate, gets

its name.

2 The Algorithm

Reinforcement learning is an umbrella term for machine learning tech-

niques that model how agents can best take actions that affect some en-

vironment that, hopefully, maximize some quantified reward. In our case,

the Pong AI is the agent, the actions it can take are moving the paddle up

and down, the environment it affects is the board, ball, and other player,

and the reward is getting the ball past the other paddle (not the score

because, as we’ll see, its not that important to the AI in the long run).

2



2.1 The Input

Note that the only input we are allowing ourselves to use is the raw pixel

data from the game’s screen. This way we can’t protest that the AI has

an unfair advantage when compared to a human, disregarding the fact

that our AI can process information billions of times faster than a human

and was mathematically constructed to win at Pong...

In any case, at every time step our AI’s input is the current frame of

the game: a single 210 × 160 × 3 three dimensional array. The first two

dimensions correspond to the length and width of the image while the

third correspond to the 3 color channels red, green and blue.

A frame of Pong in its raw, image form.

You’ll notice, however, that much of this pixel data is useless to our

AI’s purpose. For example, the color doesn’t help our AI perform any

better, and so we may as well remove that input before feeding it to the

network. This instantly reduces the dimensionality of our input by a fac-

tor of 3. We can go even further by trimming the image of its corners,

including the score. It’s not like the behavior of the opponent AI will

change depending on who has the lead. Maybe it would be useful in-

formation if the AI was pitted against a human player whose behavior

would vary with the score counter, but not in this case. Trimmed and

3



grayscaled, our preprocessed input looks something like this:

A more drab, yet more information dense, preprocessed frame of Pong.

2.2 The Artificial Neural Network

The function which will take in this pruned input image and output

whether or not we should move our paddle up or down will be an ar-

tificial neural network or ANN. The general structure of an ANN is as

follows:

A generic diagram of an ANN.

4



The input layer is the raw input, in our case its the preprocessed image

(which we flatten from a 2D matrix to a 1D vector). Each entry of this

vector corresponds to a single pixel.

The hidden layers are where abstraction takes place, for the most part.

What goes on in these layers is, big surprise, hidden to the programmer.

Its exact contents constantly update as the network learns. The large

number of connections between each layer give neural networks great lee-

way in the kind of models they can produce. In our case, we’ll only be

using one hidden layer as Pong is relatively simple.

Finally, the output layer returns some percentage of confidence in a

particular answer. In our case the paddle can only move up or down, so

we only need 1 output: the confidence in moving down. Since there are

only two options the confidence in moving up is just:

up% = 1− down%

Note that the layers in neural networks can be of any size. A common

arrangement is having inputs of higher dimension that want to be distilled,

so to speak, into lower dimensional output (e.g. an image to some text

labeling the image). In this case, the layers get gradually smaller and

smaller until they reach the desired output size. This forces the network

to have relatively low level abstractions at the bottom like edges and

shadows, and higher level ones on top like appendages or facial features.

The choice of these hyperparameters predetermine the complexity of the

network before training even begins.

Another important feature of a neural network are the non-linear ac-

tivation functions that occur after each layer. These are analogous to the

firing potentials in real neurons. If the weights in a neuron don’t meet

some threshold (defined by the activation function) then they’re input is

not sent to the next neuron (or in this case is severely weakened). This

5



introduces a sort of discreteness to each layer and is what keeps our net-

work, both in our brains and computers, from melding together into one

continuous and uninteresting state.

And on top of all of this, notice that each line in the diagram repre-

sents a weight. All of these weights can be collected into a single matrix.

It is in this way that we can convert the more intuitive model of neurons

connecting to each other to the more practical model of matrix multipli-

cation.

Putting these 3 facts together, we can represent our simple neural

network via the following equation:

y = activate(Wx)

Here activate is the activation function, x is our input of pixels, W is

the weight matrix of our hidden layer (which we have yet to adjust via

training), and y is our output (i.e. the percent confidence in moving down

vs. up)

2.3 Training the Network

We constructed our network above, and gave it the necessary room to

represent all sorts of interesting abstractions. But until we train it, that

capacity is wasted. We do this by using an algorithm called gradient de-

scent. The goal of gradient descent is to minimize some function, in our

case it is to minimize the punishment the network receives (or equivalently

maximize the reward). Imagine if our input was only 1 dimensional, gra-

dient descent would look something like this:

6



Gradient descent in 2 dimensions.

The gist of it is that we take derivatives of the reward function with

respect to each weight in the network and slightly nudge the weight in

the direction that would minimize the punishment. Doing this over and

over lets the punishment fall lower and lower, making our network more

effective at playing Pong (assuming we rewarded/punished our network

appropriately when it succeeded/failed)

Notice that even though there is a lower point further to the right of

the graph, it is blocked by a hump. Gradient descent is what’s called a

greedy algorithm, and so only cares for what’s immediately in front of

it. This limitation is inherent in almost any optimization algorithm and

can’t really be avoided. Despite this, we can still make quite good neural

nets in practice.

That was only a 2 dimensional representation of the scenario. Since our

actual input has a dimension in the hundreds, the gradient descent takes

place in a super high dimensional hyperspace. Since we can’t visualize

such a space, we’ll have to settle for this 3D representation instead:

7



Gradient descent in 3 dimensions.

3 Evolving Views on Thought

3.1 Goalposts of Classical AI

The proliferation of machine learning algorithms like the one we con-

structed above has had, and will surely continue to have, a profound

impact on our contemporary society. An important facet of this impact

is how people and the public view, not just artificial intelligence, but

intelligence in general.

To be sure, ever since the first digital computers came into use and

more and more challenging problems brought into their domain, we have

always been dazzled at their sheer effectiveness. But the task of creating

a thinking machine has always eluded us. Whenever a goal thought to

have required thought was set for a machine, computer scientists have

always stepped up to the challenge and delivered. But due to the nature

of programming, by solving this, at first, intellectual seeming task, the

programmers necessarily uncover that the problem can actually be solved

via an understandable and mindless step of instructions. If it wasn’t how

else could one program a machine to do it? This leads those who set

the goalpost of machine borne thought to retract their test with a “that

8



doesn’t count, it isn’t real thinking.”

3.2 Machine Learning is Different (maybe)

And this is a fair point. It could hardly be said that a chess AI thinks

in a way nearly as complex as a human being does, despite chess being

once thought to be a test of true original thinking. But this new wave of

AI, I posit, is different. Unlike past attempts at ‘hard-coded’ AI, these

new algorithms can not just learn on their own, but in a manner too

complex for us to manually recreate. No person could go through a neural

network and discern its function from the mess of numbers they would

find, especially with deeper ANNs. Indeed, we know that the network is

probably using some sort of process of abstraction to distill the information

from the input into the output, but we can’t put that process into concrete

terms. This is very much analogous to our understanding of the brain.

We can study the individual neurons and even networks of neurons in our

brains via a variety of imaging techniques and we know that our brains

must process information via some sort of abstraction, but saying much

more is quite difficult.

Moving even further, at what point would one be willing to accept

that there is no difference between a sufficiently advanced artificial neural

network and that of a human, if such a point exists? Despite all the

complexity of an ANN, it still is just a numerical algorithm. Yet, isn’t

that what a brain is?

In any case, the question of what this means in reality is one for an-

other time. What we are concerned with is the public’s perception of this

new wave of AI, and the similarities between ANNs and our own biolog-

ical neural networks may form an intuitive association between the two.

Indeed the name the neural network alludes to the eponymic neurons in

our own brains and thus only strengthen this intuition.

9



3.3 The Fundamental Question

That said, it is important to distinguish the complexity of our own brains

to that of ANNs like the one detailed in this paper. While more complex

ANNs may exist in the future, the sheer complexity of the human brain

is not comparable to a couple of matrix multiplications and non linear

activation functions. And in a similar vain, learning in humans is certainly

more than just a couple (thousand) passes of gradient descent, this much

is clear. But is it comparable to millions? Billions? As these technologies,

methods, and mathematics encroach closer and closer to the capabilities of

man, the public will soon have no choice to shy away from the fundamental

question of intelligence: “What is thought?”

Certainly a machine couldn’t think, right? Some pile of equations

running through some silicon. Yet science has shown us time and time

again that we too are quite similar: a pile of chemical laws running through

some flesh. And when the capability of machines reaches or, eventually,

eclipses that of man (by whatever measure you prefer) the question will

no longer be one of “does it think or not.” Faced with an increasingly

mechanical view of thought, the question becomes: do we include those

machines as beings who think, or do we abandon the idealized notion of

thought we’ve held for all these millennia?

References

[1] Mnih, Volodymyr, et at.

Asynchronous Methods for Deep Reinforcement Learning, Google

DeepMind, 2016

[2] Karpathy, Andrej

Deep Reinforcement Learning: Pong from Pixels, Google DeepMind,

2016

10


